5,421 research outputs found

    Mutation of Arabidopsis SPLICEOSOMAL TIMEKEEPER LOCUS1 Causes Circadian Clock Defects

    Get PDF
    The circadian clock plays a crucial role in coordinating plant metabolic and physiological functions with predictable environmental variables, such as dusk and dawn, while also modulating responses to biotic and abiotic challenges. Much of the initial characterization of the circadian system has focused on transcriptional initiation, but it is now apparent that considerable regulation is exerted after this key regulatory step. Transcript processing, protein stability, and cofactor availability have all been reported to influence circadian rhythms in a variety of species. We used a genetic screen to identify a mutation within a putative RNA binding protein (SPLICEOSOMAL TIMEKEEPER LOCUS1 [STIPL1]) that induces a long circadian period phenotype under constant conditions. STIPL1 is a homolog of the spliceosomal proteins TFP11 (Homo sapiens) and Ntr1p (Saccharomyces cerevisiae) involved in spliceosome disassembly. Analysis of general and alternative splicing using a high-resolution RT-PCR system revealed that mutation of this protein causes less efficient splicing of most but not all of the introns analyzed. In particular, the altered accumulation of circadian-associated transcripts may contribute to the observed mutant phenotype. Interestingly, mutation of a close homolog of STIPL1, STIP-LIKE2, does not cause a circadian phenotype, which suggests divergence in function between these family members. Our work highlights the importance of posttranscriptional control within the clock mechanism. © 2012 American Society of Plant Biologists. All rights reserved

    Modelling the viral dynamics of the SARS-CoV-2 Delta and Omicron variants in different cell types.

    Get PDF
    We use viral kinetic models fitted to viral load data from in vitro studies to explain why the SARS-CoV-2 Omicron variant replicates faster than the Delta variant in nasal cells, but slower than Delta in lung cells, which could explain Omicron's higher transmission potential and lower severity. We find that in both nasal and lung cells, viral infectivity is higher for Omicron but the virus production rate is higher for Delta, with an estimated approximately 200-fold increase in infectivity and 100-fold decrease in virus production when comparing Omicron with Delta in nasal cells. However, the differences are unequal between cell types, and ultimately lead to the basic reproduction number and growth rate being higher for Omicron in nasal cells, and higher for Delta in lung cells. In nasal cells, Omicron alone can enter via a TMPRSS2-independent pathway, but it is primarily increased efficiency of TMPRSS2-dependent entry which accounts for Omicron's increased activity. This work paves the way for using within-host mathematical models to understand the transmission potential and severity of future variants

    Determination of density and concentration from fluorescent images of a gas flow

    Full text link
    A fluorescent image analysis procedure to determine the distribution of species concentration and density in a gas flow is proposed. The fluorescent emission is due to the excitation of atoms/molecules of a gas that is intercepted by an electron blade. The intensity of the fluorescent light is proportional to the local number density of the gas. When the gas flow is a mixture of different species, this proportionality can be exploited to extract the contribution associated to the species from the spectral superposition acquired by a digital camera. This yields a method that simultaneously reveals species concentrations and mass density of the mixture. The procedure is applied to two under-expanded sonic jets discharged into a different gas ambient - Helium into Argon and Argon into Helium - to measure the concentration and density distribution along the jet axis and across it. A comparison with experimental and numerical results obtained by other authors when observing under-expanded jets at different Mach numbers is made with the density distribution along the axis of the jet. This density distribution appears to be self-similar.Comment: New figures in portable .eps forma

    Momentum-resolved resonant inelastic soft X-ray scattering (qRIXS) endstation at the ALS

    Get PDF
    A momentum resolved resonant inelastic X-ray scattering (qRIXS) experimental station with continuously rotatable spectrometers and parallel detection is designed to operate at different beamlines at synchrotron and free electron laser (FEL) facilities. This endstation, currently located at the Advanced Light Source (ALS), has five emission ports on the experimental chamber for mounting the high-throughput modular soft X-ray spectrometers (MXS) [24]. Coupled to the rotation from the supporting hexapod, the scattered X-rays from 27.5° (forward scattering) to 152.5° (backward scattering) relative to the incident photon beam can be recorded, enabling the momentum-resolved RIXS spectroscopy. The components of this endstation are described in details, and the preliminary RIXS measurements on highly oriented pyrolytic graphite (HOPG) reveal the low energy vibronic excitations from the strong electron-phonon coupling at C K edge around σ* band. The grating upgrade option to enhance the performance at low photon energies is presented and the potential of this spectroscopy is discussed in summary

    High-Fidelity Tissue Engineering of Patient-Specific Auricles for Reconstruction of Pediatric Microtia and Other Auricular Deformities

    Get PDF
    Introduction: Autologous techniques for the reconstruction of pediatric microtia often result in suboptimal aesthetic outcomes and morbidity at the costal cartilage donor site. We therefore sought to combine digital photogrammetry with CAD/CAM techniques to develop collagen type I hydrogel scaffolds and their respective molds that would precisely mimic the normal anatomy of the patient-specific external ear as well as recapitulate the complex biomechanical properties of native auricular elastic cartilage while avoiding the morbidity of traditional autologous reconstructions. Methods: Three-dimensional structures of normal pediatric ears were digitized and converted to virtual solids for mold design. Image-based synthetic reconstructions of these ears were fabricated from collagen type I hydrogels. Half were seeded with bovine auricular chondrocytes. Cellular and acellular constructs were implanted subcutaneously in the dorsa of nude rats and harvested after 1 and 3 months. Results: Gross inspection revealed that acellular implants had significantly decreased in size by 1 month. Cellular constructs retained their contour/projection from the animals' dorsa, even after 3 months. Post-harvest weight of cellular constructs was significantly greater than that of acellular constructs after 1 and 3 months. Safranin O-staining revealed that cellular constructs demonstrated evidence of a self-assembled perichondrial layer and copious neocartilage deposition. Verhoeff staining of 1 month cellular constructs revealed de novo elastic cartilage deposition, which was even more extensive and robust after 3 months. The equilibrium modulus and hydraulic permeability of cellular constructs were not significantly different from native bovine auricular cartilage after 3 months. Conclusions: We have developed high-fidelity, biocompatible, patient-specific tissue-engineered constructs for auricular reconstruction which largely mimic the native auricle both biomechanically and histologically, even after an extended period of implantation. This strategy holds immense potential for durable patient-specific tissue-engineered anatomically proper auricular reconstructions in the future. © 2013 Reiffel et al

    Type I interferon signaling deficiency results in dysregulated innate immune responses to SARS-CoV-2 in mice

    Get PDF
    SARS-CoV-2 is a newly emerged coronavirus, causing the global pandemic of respiratory coronavirus disease (COVID-19). The type I interferon (IFN) pathway is of particular importance for anti-viral defence and recent studies identified that type I IFNs drive early inflammatory responses to SARS-CoV-2. Here, we use a mouse model of SARS-CoV-2 infection, facilitating viral entry by intranasal recombinant Adeno-Associated Virus (rAAV) transduction of hACE2 in wildtype (WT) and type I IFN-signalling-deficient (Ifnar1-/- ) mice, to study type I IFN signalling deficiency and innate immune responses during SARS-CoV-2 infection. Our data show that type I IFN signaling is essential for inducing anti-viral effector responses to SARS-CoV-2, control of virus replication and to prevent enhanced disease. Furthermore, hACE2-Ifnar1-/- mice had increased gene expression of the chemokine Cxcl1 and airway infiltration of neutrophils as well as a reduced and delayed production of monocyte-recruiting chemokine CCL2. hACE2-Ifnar1-/- mice showed altered recruitment of inflammatory myeloid cells to the lung upon SARS-CoV-2 infection, with a shift from Ly6C+ to Ly6C- expressing cells. Together, our findings suggest that type I IFN deficiency results in a dysregulated innate immune response to SARS-CoV-2 infection. This article is protected by copyright. All rights reserved

    4-dimensional functional profiling in the convulsant-treated larval zebrafish brain

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Functional neuroimaging, using genetically-encoded Ca(2+) sensors in larval zebrafish, offers a powerful combination of high spatiotemporal resolution and higher vertebrate relevance for quantitative neuropharmacological profiling. Here we use zebrafish larvae with pan-neuronal expression of GCaMP6s, combined with light sheet microscopy and a novel image processing pipeline, for the 4D profiling of chemoconvulsant action in multiple brain regions. In untreated larvae, regions associated with autonomic functionality, sensory processing and stress-responsiveness, consistently exhibited elevated spontaneous activity. The application of drugs targeting different convulsant mechanisms (4-Aminopyridine, Pentylenetetrazole, Pilocarpine and Strychnine) resulted in distinct spatiotemporal patterns of activity. These activity patterns showed some interesting parallels with what is known of the distribution of their respective molecular targets, but crucially also revealed system-wide neural circuit responses to stimulation or suppression. Drug concentration-response curves of neural activity were identified in a number of anatomically-defined zebrafish brain regions, and in vivo larval electrophysiology, also conducted in 4dpf larvae, provided additional measures of neural activity. Our quantification of network-wide chemoconvulsant drug activity in the whole zebrafish brain illustrates the power of this approach for neuropharmacological profiling in applications ranging from accelerating studies of drug safety and efficacy, to identifying pharmacologically-altered networks in zebrafish models of human neurological disorders.This work was funded by the Biological and Biotechnology Research Council (CASE studentship BB/L502510/1, with AstraZeneca Safety Health and Environment), and by the University of Exeter and AstraZeneca

    Comets, historical records and vedic literature

    Full text link
    A verse in book I of Rigveda mentions a cosmic tree with rope-like aerial roots held up in the sky. Such an imagery might have ensued from the appearance of a comet having `tree stem' like tail, with branched out portions resembling aerial roots. Interestingly enough, a comet referred to as `heavenly tree' was seen in 162 BC, as reported by old Chinese records. Because of weak surface gravity, cometary appendages may possibly assume strange shapes depending on factors like rotation, structure and composition of the comet as well as solar wind pattern. Varahamihira and Ballala Sena listed several comets having strange forms as reported originally by ancient seers such as Parashara, Vriddha Garga, Narada and Garga. Mahabharata speaks of a mortal king Nahusha who ruled the heavens when Indra, king of gods, went into hiding. Nahusha became luminous and egoistic after absorbing radiance from gods and seers. When he kicked Agastya (southern star Canopus), the latter cursed him to become a serpent and fall from the sky. We posit arguments to surmise that this Mahabharata lore is a mythical recounting of a cometary event wherein a comet crossed Ursa Major, moved southwards with an elongated tail in the direction of Canopus and eventually went out of sight. In order to check whether such a conjecture is feasible, a preliminary list of comets (that could have or did come close to Canopus) drawn from various historical records is presented and discussed.Comment: This work was presented in the International Conference on Oriental Astronomy held at IISER, Pune (India) during November, 201

    SVM Classifier – a comprehensive java interface for support vector machine classification of microarray data

    Get PDF
    MOTIVATION: Graphical user interface (GUI) software promotes novelty by allowing users to extend the functionality. SVM Classifier is a cross-platform graphical application that handles very large datasets well. The purpose of this study is to create a GUI application that allows SVM users to perform SVM training, classification and prediction. RESULTS: The GUI provides user-friendly access to state-of-the-art SVM methods embodied in the LIBSVM implementation of Support Vector Machine. We implemented the java interface using standard swing libraries. We used a sample data from a breast cancer study for testing classification accuracy. We achieved 100% accuracy in classification among the BRCA1–BRCA2 samples with RBF kernel of SVM. CONCLUSION: We have developed a java GUI application that allows SVM users to perform SVM training, classification and prediction. We have demonstrated that support vector machines can accurately classify genes into functional categories based upon expression data from DNA microarray hybridization experiments. Among the different kernel functions that we examined, the SVM that uses a radial basis kernel function provides the best performance. The SVM Classifier is available at

    Introduction to G2\mathrm{G}_2 geometry

    Full text link
    These notes give an informal and leisurely introduction to G2\mathrm{G}_2 geometry for beginners. A special emphasis is placed on understanding the special linear algebraic structure in 77 dimensions that is the pointwise model for G2\mathrm{G}_2 geometry, using the octonions. The basics of G2\mathrm{G}_2-structures are introduced, from a Riemannian geometric point of view, including a discussion of the torsion and its relation to curvature for a general G2\mathrm{G}_2-structure, as well as the connection to Riemannian holonomy. The history and properties of torsion-free G2\mathrm{G}_2 manifolds are considered, and we stress the similarities and differences with Kahler and Calabi-Yau manifolds. The notes end with a brief survey of three important theorems about compact torsion-free G2\mathrm{G}_2 manifolds.Comment: 37 pages. To appear in a forthcoming volume of the Fields Institute Communications, entitled "Lectures and Surveys on G2 manifolds and related topics". Version 2: Corrected the references. No other change
    • …
    corecore